AN12985
RT600 Hybrid Boot

Rev. 0 — 09/2020 Application Note

by: NXP Semiconductors

. Contents
1 Introduction 1 Introduction...........ccceeeerinnnicenn, 1
The RT600 family are RAM-based and M33-based MCUs withan internal DSP. 2 RT600 OOt OVervieW.......c..cvvr e !
. . . 3 Sample example application........... 3
The code must be either booted into the memory (from a host or non-volatile 4 Conclusion 17
memory) or executed from an external flash memory directly without booting. A 5 References. """"""""""""""""""" 17

practical use case is code which boots and executes from the flash, so the boot

image contains the code to boot internally into the RT685 RAM stored in the upper flash on powerup and the lower flash contains
run-time code fetched/executed directly. The SDK does not provide this more practical use case, but the code that often resides
in the internal RAM is desirable for performance reasons. The internal RAM size may be reserved mostly for data or code which
may exceed the 4.5 MB of internal RAM provided on the RT685 MCUs.

This application note provides a project with a part of code booted from the external flash into the internal RT685 SRAM and the
remaining code that resides in the flash is fetched/executed directly. Details on how to place the code as bootable into the SRAM or
for execution directly from the flash via the assignments made in the linker script are provided. This application note also provides
instructions on how to program the flash with both the bootable RAM portion of the code and the run-time code residing in the lower
flash. Details such as secure boot or OTFAD decryption of flash data are out of scope.

2 RT600 boot overview

2.1 Boot features

Because the i.MX RT600 MCUs have no internal flash for code and data storage, the images must be stored elsewhere for loading
upon reset or the CPU can execute them from the external memory (XIP). The images can be loaded into the on-chip SRAM from
the external flash or downloaded via the serial ports (UART, SPI, 12C, USB). The code is then validated, and the boot ROM jumps
to the on-chip SRAM.

Depending on the values of the OTP bits and ISP pins and the image header type definition, the bootloader decides whether to
download the code into the on-chip SRAM or run it from an external memory. The bootloader checks the OTP bit settings first and
then the ISP pins. If bit [3:0] in the OTP word BOOT_CFG [0] is not programmed (4b ’ 0000), the boot source is determined by the
states of the ISP boot pins (PIO1_15, PIO1_16 , and PIO1_17).

2.2 Boot settings

In this application note, the FlexSPI boot mode is used. If the PRIMARY_BOOT_SRC bits in the OTP are not set, the i.MX RT600
reads the status of the ISP pins to determine the boot source. Table 1 describes the boot mode and the ISP downloader modes
based on the ISP pins for the FlexSPI boot.

Table 1. Boot mode and ISP Downloader modes based on ISP pins

ISP2 pin ISP1 pin ISPO pin
Boot mode Description
PIO1 17 PIOl 16 PIO1 15
— Low Low Low Reserved

Table continues on the next page...

h
P

NXP Semiconductors

Table 1. Boot mode and ISP Downloader modes based on ISP pins (continued)

RT600 boot overview

Boot mode

ISP2 pin

PIO1_17

ISP1 pin

PIOl_16

ISPO pin

PIOl_15

Description

SDIOO0 (SD Card)

Low

Low

High

Boot from an SD card device connected
to SDIO 0 interface. The i. MXRT600 will
look for a valid image in the SD card
device. If there is no valid image found,
the i.MXRT600 will enter the ISP boot
mode based on OTP DEFAULT ISP _MODE
bits (6:4, BoOT CFG [01)).

FlexSPI Boot from Port
B

Low

High

Low

Boot from Quad or Octal SPI Flash devices
connected to the FlexSPl interface 0 Port B.
The i.MXRT600 will look for a valid image in
external Quad/Octal SPI Flash device.

If there is no valid image found, the
i.MXRT600 will enter ISP boot mode.

FlexSPI Boot from Port
A

Low

High

High

Boot from Quad/Octal SPI Flash devices
connected to the FlexSPl interface 0 Port A.
The i.MXRT600 will look for a valid image in
external Quad/Octal SPI Flash device.

If there is no valid image found, the
i.MXRT600 will enter ISP boot mode.

SDIO 0 (eMMC)

High

Low

Low

Boot from an SD card device connected
to SDIO 0 interface. The i.MXRT600 will
look for a valid image in the SD card
device. If there is no valid image found,
the i.MXRT600 will enter the ISP boot
mode based on OTP DEFAULT ISP MODE
bits (6:4, BOOT CFG [0]))

USB DFU (master
boot)

High

Low

High

USB DFU class is used to download a
boot image over the USB High-speed port
into on-chip SRAM.

Serial ISP (UART, SPI,
[2C, USB-HID)

High

High

Low

The Serial Interface (UART, SPI, and
I2C,USB-HID) is used to program OTP,
external Flash, SD or eMMC device.

Serial Master
Boot(UART, SPI, I12C,
USB-HID)

High

High

High

Serial Master boot (SPI Slave, I12C Slave,
or UART, USB-HID) is used to download
a boot image over the serial interface (SPI
Slave, 12C slave or UART,USB-HID).

2.3 Boot image offset

The bootloader looks for the boot image from a specified offset on a boot media. See the details in Table 2.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

2/19

NXP Semiconductors

Sample example application

Table 2. Image offset on different boot media

Boot media Image offset
FlexSPI Boot (Serial NOR Flash device) 0x1000
SD Boot (SD card) 0x1000
eMMC boot (eMMC memory) 0x1000
Recovery Boot (SPI NOR Flash device) 0x1000

2.4 Image link region

For the FlexSPI serial NOR flash boot, there are two possibilities: the Load-to-RAM boot and the XIP boot. For the Load-to-RAM
boot, after the boot ROM runs, it initializes the FlexSPI module according to the external NOR flash type connected to the MCU
device. The ROM loads the boot image from the NOR flash device with the 0x1000 offset to the MCU’s internal SRAM. After that,
the ROM jumps to the SRAM to run the boot image. For the XIP boot, the boot ROM only boots the image from the NOR flash
device. The boot image header inside the boot image tells the ROM whether the boot image is the Load-to-RAM image or the XIP
image. The ROM bootloader supports automated booting from the Serial NOR (Quad or Octal SPI Flash, HyperFlash) device and
the eXecute-In-Place (XIP) from this Serial NOR flash. This is the main feature of the ROM bootloader. Figure 1 shows the various
memory regions.

i.MXRT600 i.MXRT600
O 128MB 128MB

0x0800_1000 FlexSPI Map FlexSPI Map
0x0800_0000 4KB boot hdr

DSP image DSP image
0x0020_0000 0x0020_0000
0x0008_0000 = 0x0008_0000 | M33 Non-XIP Imagc | -

4.5MB SRAM 4.5MB SRAM

— —
0x0000_0000 [ICREIRONEENN 0x0000_00c0 | NNIEREIRONGEENN

Figure 1. Image link region

For more details regarding the FlexSPI boot flow and process, see How fo Enable Master Boot from Serial NOR Flash

(document AN12773).

3 Sample example application

3.1 Environment

3.1.1 Hardware environment
* Board:

— MIMXRT685EVK

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

3/19

https://www.nxp.com/doc/AN12773

NXP Semiconductors

Sample example application
» Debugger:

— Integrated CMSIS-DAP debugger on the board
* Miscellaneous:

— 1 micro USB cable
— PC

* Board setup:
— Connect the micro USB cable between the PC and the J5 link on the board to load and run a demo.

3.1.2 Software environment

* Tool chain:

— MCUXpresso IDE 11.2 .0 or Keil 5.31 or IAR 8.50.5 IDEs
» Software package:

— SDK_2.8.2_EVK-MIMRT685S

3.2 Steps

3.2.1 Steps for Keil IDE

1. Open the hello_world.uvmpw file (located in the SDK_2.8.2_EVK-MIMXRT685Sboardslevkmimxrt685ldemo_apps |
hello_worldimdk folder) using the Keil IDE . This opens the Keil IDE with the example “hello_world” program.

Add a new target with the “hello_world_hybrid_debug” name, which should be based on the the “hello_world_debug”
target which already exists in the project.

a. Click the “Managed Project Iltem” icon, as shown in Figure 2.

Flash Debug Peripherals Tools SVCS
F- - = P

Al

4 | hello_world debug

Window Help

Ul
1l

2%

Figure 2. Manage project items

b. This window gives you the option to add your own targets to the “ Project Targets ” list. Create a new target and
select it as the current target as shown in Figure 3.

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note

4/19

NXP Semiconductors

Sample example application

Manage Project Items X

Project kems |Foldu'stﬂmsu'u] Books |

Project Targets: 4 ¥ Gows % | 4| | |Fles: X 4| €
hello_worid debug hello_word ¢

hello_word flash_debug board extemal_code.c
hello_world release doc

hello_world flash_release drivers

hello world hybrid debug device

Ltilties

component -uart
flash_config
component-senal_manager
component fists

startup

CMSIS

e T e |

[ok | cancel Heo |

Figure 3. Manage Project Item, adding a new target

c. Add a new C file, which will be later placed to the external flash memory for XIP to the current project. In this
example, a very short function with a for loop inside another for loop followed by a print statement is used. This
function is then called from the main function in the hello_world.cfile. Let’s call this C file external _code.c. Extract
the hello_world_hybrid_mdk.zip file and copy the external_code.c, hello_world.c, and external_code.hfiles in the
“hello_world_hybrid_mdk” into the SDK_2.8.2 EVK-MIMXRT685S|boards|evkmimxrt6851demo_apps|hello_world
folder. Now add the exfernal _code.cfile in the source group into the “hello_world_hybrid_debug” target, as shown
in Figure 4.

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 5/19

NXP Semiconductors

Sample example application

Manage Project Items

Project ems | Folders/Extensions | Books |

Project Targets: i} X |4 ¥ | |Groups:
hello_world debug source
hello_word flash_debug board
hello_world release doc
hello world flash _release drivers
hello_world hybrd debug device
utilities
component-uart
flash_config
component-seral_manager
componentists
startup
CMSIS

Set as Cument Target

OK I Cancel

Figure 4. Manage Project Item, adding a new file

d. When the new C code is compiled, its object image (.0) can be placed in the external flash for XIP. This is
achieved by modifying the MIMXRT685Sxxxx_cm33_ram.scflinker script file. Make a copy of this file and rename
it toMIMXRT685Sxxxx_cm33_hybrid.scf. In the MIMXRT685Sxxxx_cm33_hybrid.scffile, make a few changes to
program the flash.Firstly, allocate the starting address and size for the part of code which will be executed from
the external flash. Note that the starting address for the text can only be after the interrupt vector table, as shown
in Figure 5.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

6/19

NXP Semiconductors

Sample example application

4€ g¢define
47
48 g¢define
45 gdefine
50
51 #define=
52
53 ¢define
54 ¢define
55
5€ ¢define
57 #define
58
55 pdefine
€0 gdefine
€l
€2 #define
.63 #define

m flash start

m boot_flash conf start
m boot_flash conf size

m_boot_interrupts_start

m_interrupts_start
m_interrupts_size

m _TeXt start
m_text size

m_text_2_start
m_text_2_size

m data_start
m_data_size

Figure 5. Allocating the starting address and size

Ox08001000
Ox0008 0
Ox00000

Ox000E0200
Ox000FFEQD

(m_boot_interrupts_start + m_interrupts_size)
0x00000400

e. Secondly, add the following lines (line#85 - 87) of code inside the *scffile.

78 * (.isr_vector,+FIRST)

i) }

Bl }

82 ER m text m_text sStart m_text size {
23 LANY (+RO)

g4 }

B6 external code.o

87 DU

88

8o RW_m data m_data_start ALIGN 4
- lu] * (CodeQuickAccess)

9l “* (DataQuickAccess)

+ 92 JANY (+RW +2I)

Figure 6. Modifying linker file

m_data_size-5Stack_Size-Heap_Size ({

76 LR m interrupts m boot interrupts_start m interrupts_size+m text size+m text 2 size {
T7 VECTOR_ROM m_interrupts_start m_interrupts_size {

80 VECTOR RAM +0 FILL Ox0 m text_start-Imagelimit (VECTOR_ROM) {

85 ER m textZ (m text 2 start+Imagelimic (ER m Cextc)-m text start) m text 2 size {

: RW data

Note that the file name used for the new C file isexfernal_code.c and in line#86 , the object file is
calledexternal_code.o. By adding these lines, direct the linker to keep the execution and load the address for

the exfernal_code.ofile at the same location. Because the external_code.cfile is accessing “printf”, which is a
part of the text portion, the linking should happen only after the text section is loaded. For this, find the exact
address from where the external_code.o file should start and execute, which is just after the text region. Because
the “ImageLimit” function gives the end address for an execution region, “ImageLimit(ER_m_text)-m_text_start”

provides a location which is just after the text region.

f. Click the target options button, as shown in Figure 7.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

7/19

NXP Semiconductors

Sample example application

\SDK_2.7.0_EVK-MIMXRT685\boards\evkmimxrt685\Projects\hello_world\
Project Flash Debug Peripherals Tools SVCS Window Hel

| % 3 | == | PR | EE EE JE
» 4| %8| nelto_world hybrid_deb [~ _] “ @9

Figure 7. Edit target options

"l

s

"H=i

4

g. Now open the window and then open the “Linker” tab. Using the highlighted button, place the
MIMXRT685Sxxxx_cm33_hybrid.scffile as the linker file:

K4 Options for Target *hello_world_hybrid_debug' X
Device | Target | Output | Listing | User | C/C++ (ACE) | Asm Debug] Ukilities |
[~ Use Memory Layout from Target Dialog X/O Base: I
[T Make RW Sections Posttion Independent R/O Base: |mmnouom
[~ Make RO Sections Posttion Independent R/W Base |&(2DD40000

[~ Dont Search Standard Libraries
[V Report ‘might fail' Conditions as Emors

disable Wamings: |5314

—
Scattor UINXRT685S000_om33_hybrd.sd_D @_J Edt. |

Misc |-/-/-/././devices/MIMXRTE85S/am /keil_lib_power lib remove —keep="(flash_conf)
controls
Linker |-cpu=Cortex-M33 "0 ~
control |Hibrary_type=microlib ~diag_suppress 6314 —strict -scatter " \MIMXRT685S0xx_cm33_hybrid scf”
string v

q 0K ! Cancel Defaults Help |

Figure 8. Target options to change linker file

h. See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 and perform the steps for running the
“hello_world” demo using the Keil IDE. Make sure that the project target is the one which was just modified.

i. Place a breakpoint at the function call inside the main function of the hello_world.cfile and debug. In the address
window, the address of the function must be in the external flash.

3.2.2 Steps for MCUXPresso IDE

For the MCUXpresso IDE, modify the FreeMarker Linker script to relocate the code from the flash to the RAM.In this example,
run the bulk of application code from the RAM, typically just by leaving the startup code and the vector table along with the

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 8/19

NXP Semiconductors

Sample example application

“external_code” object file in the flash. This is achieved by moving three linker script template files into the /inkscripts folder within
the “hello_world” project: main_text./dt, main_rodata.ldf, and main_data./dt. The above linker template scripts cause the main body
of the code to be relocated into the main (first) RAM bank of the target MCU, which (by default) will also contain data/bss, as well
as the stack and heap. The boot headers and vector tables must be in the flash, because the boot ROM needs them. The code
that performs this relocation is executed early within the reset handler (within the startup_xxfile). However, there is a potential for
other critical functions to be called before this relocation is performed. For example, System/nif() may be called first to perform
essential operations, such as enabling the RAM. Any function that is called before the relocation must not be relocated. This is the
reason for keeping the starfup_*and system_*files in the flash in this example. For more details, see Section 17.14, “FreeMarker
Linker Script Templates” in the MCUXpresso IDE User Guide.

In the main_text./dtfile, the following lines indicate the linker to pull the text section from the startup_*.o, system_*.0, and
external_code.o object files:

*startup *.o (.text.¥*)
*system *.o (.text.*)
*external code.o (.text. *)

In main_rodata.ldt, the following lines indicate the linker to pull in the “rodata” and “constdata” sections from the sfarfup_*.o,
system_"*.0, and external_code.o object files:

*startup *.o (.rodata .rodata.* .constdata .constdata.¥)
*system *.o (.rodata .rodata.* .constdata .constdata.*)
external code.o (.rodata .rodata. .constdata .constdata.*)
In main_data.ldl, the following lines indicate the linker to pull in the “text”, “rodata”, “constdata”, and “data” sections:
(.text)
(.rodata .rodata. .constdata .constdata.*)
= ALIGN (${text align});
(.data)

The following are the required steps:

1. Follow Gefting Started with MCUXpresso SDK for EVK-MIMXRT685 to import the “ hello_world” project using the
MCUXpresso IDE.

2. Add a new configuration called “hybrid_debug” by right clicking on the project , going to the “Manage” option in “Build
Configurations”. Create a new configuration which should be based on the existing “Debug” configuration.

B8 vorkspace - MCUXpresso IDE

File Edit Navigate Search Project New * Help .Cs’eate New Configuration X
- ot o Golto Cvmn PN
Project Explorer 1 |: Peripherals+ Openin New Window] s . : i
Show in Local Terminal » Note: The configuration name will be used as a directory name in
v &% evkmimxrt685 hello world <Det & Copy Cul+C . i the file syste that it is valid for your platform.
| © Project Settings i S Configur... Description Status ‘
| & Binaries % Delete Delete Debug Debug build Active Name: Hybrid_debug|
& Indudes ; -
Source t Release Release build Description:
' CMSIS Move
board .
y component Rename.. 2 - Copy settings from
N Import. Set Active Delete | Rename... Y Bttt . p
dece 2 m (
i ot @) Existing configuration | Debug(Debug build) ¥
® evkminart6as BUkd Projeat P ol O Default configuration 'Debug(Debug build)
@ st onbi ClenPrjct ok | conce
@ libs Refresh F5 () Import from projects - not selected -
5 source Close Project .
startup Close Unrelated Projects @) Import predefined -~ not selected -
@ utiities
Build Configurations > Set Active
& Debug
, doc Build Targets > Manage.. .
b € onsole & &
) - ey > Build Al
cla s © Runfs > Clean Al OK Cancel
>

#3 MCUXpresso IDE - Qu # Debughs Build Selected,. 3t this time.

Figure 9. Adding a new build configuration into existing project

3. Set the new “Hybrid_debug” as the active configuration, as shown in Figure 10.

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 9/19

NXP Semiconductors

Sample example application

. evikmimurt685_hello_world: Manage Configurations 4
Configuration Description Status L
Debug Debug build Active
l Hybrid_debug
TrREtrase - Release build st
Set Active Mew... Delete Rename...
OK Cancel

L)

Figure 10. Set as active configuration

4. Extract the hello_world_hybrid_mcux.zip file and copy the external_code.c, hello_world.c, and external_code.h files in

the hello_world_hybrid_mcuxl|source folder into your “hello_world” project source folder. The project folder location can
be found by right clicking into the project in the MCUXpresso IDE and going to the “Resource” option and then selecting
the “Show in System Explorer” option.

i — -
! File h Project Configlools Run Analysis
Fulls Qiw|e oW s F|p e e gt oL il -0-rQri®dy>igpeipyiixsoroy Qu
% Project Explorer & % Peripherals+ Wl Regig B Properties for evkmimxrt685_hello_world m} s Disassembly &
: type filter text Resource v ¥ w || Fnter location he
= evkmimxrt685_dsp_mu_polling_cm33
&F evkmimxrt685_flexspi_octal_dma_transf¢ . Path: fevkmimxrt685_hello_world
& evkmimurt685_flexspi_octal_polling_tran c?lc °'SB i Type: Project debug context
& ++ Bui —
« evkmimut685 flexspl psram dmatrang | O o | tocation: | 1)) <501 11.1.1_3241\workspace\evkmimxt685_hello world |<=|
= evkmimxrt685_flexspi_psram_polling_trg = =
& evkmimurt685_gpio_led_output MCUXpresso Cor | Last modified: July 8, 2020 at 4:02:36 PM Show In S Explorer
. z tﬁSS’h "07 cild <hiybrid dell Project Natures Text file encoding
£5 evkmimxr _hello_worl ybrid_del P
| Py fi x| (@ i 5
&5 evkmimxrt685_Ipadc_interrupt roject Reference: g Inherited from container (UTF-8)
Run/Debug Settir) Other: | UTF-8
Task Tags
i f
\ Validation [Store the encoding of derived resources separately
New text file line delimiter
(®) Inherited from container (Windows)
(O Other: Windows
: < > Restore Defaults Apply
i |
|
| & Quickstart Panel & Apply and Close Cancel
s M IV menrea INE - Aulclebass oamar 4

Figure 11. Finding location of MCUXpresso project

Copy the linkscript folder inside “hello_world_hybrid_mcux” and add it into the “hello_world” project. The folder should
contain three files: main_text./dt, main_rodata.ldt, and main_data.ldt.

See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 and perform the steps to build and run the “ hello_wor
Id” project using the MCUXpresso IDE.

Place a breakpoint inside exfernal_code.c and you will see that the debugger moves from the RAM to the flash location.

3.2.3 Steps for IAR IDE

1.

Open hello_world.eww (located in the SDK 2.8.2_EVK-MIMXRT685S|boardslevkmimxrt685Idemo_apps |
hello_worldliarfolder) using the IAR IDE. This opens the IAR IDE with the example “hello_world” application.

Add a new configuration called “hybrid_debug” by clicking on “Project->Edit Configurations...” and create a new
configuration which is based on the existing “Debug” configuration.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note 10/19

NXP Semiconductors

Sample example application

File Edit View |Project|CMSlS-DAP Tools Window Help

NN EQ Add Files...

Workspace Add Group...

flash_debug Import File List...
Add Project Connection...

Files —
Edit Configurations...
=)] hellu_worf""* - D

Configurations for "hello_world" X New Conligumiine ~

N .
Configurations: IT" o ——

<|hybrid_debug ! |

ehiy Cancel
S Tool chain:

release

Arm v
flash_release

Based on configuration:
flash_debug v

Factory settings

@ Debug
(Drag to order) .. ORelease |

Figure 12. Edit Configurations, adding a new build configuration into existing project

3. Extract the hello_world_hybrid_iar.zip file and copy the external _code.c, hello_world.c, and
external_code.hfiles in the hello_world_hybrid _iar/source folder into the SDK 2.8.2 EVK-MIMXRT685S|boards|
evkmimxrt685ldemo_appslhello_world folder. Now add the external_code.c file in the source group by right clicking
on the source folder of the project, as shown in Figure 13.

— —

s -W__l 1] 21 .
ELEEEEEEEEEEEEEE E X
L@ [hellc pHons... HL Protot
— rototypes
-Stﬂrtup Make EERERRERERRERERRE R
B utilities - .
= ompile
-OUtPUt p) _f.'l"l"l"l"l"l""""l"l"l"l"l"l"l""'l"l'
Rebuild All t Code
C|I‘:ar'| RERRRARARRERRRRERRR
A1
C-STAT Static Analysis > # @brief Main func
5 Build M
T int main (void)

el warld Add » Add Files...

Add "hello_world.c"

bug Log Remowve
_ Add Group...

Rename...

Figure 13. Adding new source file into existing project

4. When the new C code is compiled, its object image (.0) can be placed into the external flash for XIP. This can
be achieved by modifying the MIMXRT685Sxxxx_cm33_flash.scflinker script file. Copy this file and rename it to

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 11/19

NXP Semiconductors

Sample example application

MIMXRT6855xxxx_cm33_hybrid.scf. In the MIMXRT685Sxxxx_cm33_hybrid.icffile, make a few changes to program

the flash:

3 define symbol m_interrupts_starc = 0x02001000;

a5 define aymbol m incerrupta end = 0x0300112F;
define symbol m text atarc = 0x08001130;

52 define aymbol m text_end = Ox0Q2LFFEFE;

54 hﬂtine aymbol m_inTerrupts_ram STArT = 0x00080000;

S define symbol m interrupts ram end = 0x00080000 + _ ram vector table offset

7 define symbol m daca start = m_interrupts ram SCArT + _ ram Vector table size
define symbol m data end = OxO001FFEEE;
define symbol m usb sram start = 0xs0140000;
define symbol m_usbk_sram end = Ox40143FFE;

Figure 14. Changes to program the flash

Addresses 0x20080000 and 0x00080000 point to the same offset on the same SRAM (just the alias address). The only
difference are the CM33 core access addresses below 0x20000000 with the code bus, and access the upper address
by the system bus. For this use case, putting code on the code bus should be more efficient. Therefore, 0x00080000 is
recommended in the linker file .

Now add the following lines (line# 87-89) of code into the MIMXRT685Sxxxx_cm33_hybrid.icffile to copy all of the code to
the RAM excluding the sfartup, system, and external_code.o files.

/* regions for USB */
define region USB_BDT_region = mem: [from m usb_sram start to m_usb_sram start + usb bdt_size - 1];
define region USE SRAM region = mem: [from m ush_sram start + usb_bdt size to m usb sram end];

initialize by copy { readonly, readwrite, section .textrw, section CodeQuickhccess, section DataQuickhccess})
eXcept { section .rodata, section .flash conf, readonly object startup MIMYRTE855 cm33.0, readonly object system MIMXRTE85S cm33.o,
readonly object external code.o}:

de not initialize { section .noinit, section m_ush_bdc, sectiocn m_usb_global }:

Figure 15. Adding lines

The RAM code is copied in the last step by /iar_program_start(). All code/data which is accessed before /ar_program_start()
must not be relocated. That is why you must keep the vector table, Reset Handler(), and System/nit()in the flash. Also,
“.flash_config” is for ROM use and it should not be relocated as well.

Open the options window by right clicking the project and then open the “Linker” tab. Using the highlighted button, place
the MIMXRT685Sxxxx_cm33_hybrid.icffile as the linker file, as shown in Figure 16.

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 12/19

NXP Semiconductors

Sample example application

Category:

Options for node "hello_world"

General Options

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler

Custom Build
Build Actions

Debugger
Simulator
CADI
CMSIS DAP
GDE Server
I5et
Jinkf1-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK

TI MSPFET
TI XDS

Qutput Converter

Third-Party Driver

Diagnostics

2e=rine
% Library Input

Linker configuration file
Ovemide default

Checksum
Optimizations

Factory Settings

Encodings Extra Options
Advanced Output List

@_DlRS\MIMXHTSBSSxm_cmSB_hyb@

Configuration file symbol definttions: (one per line)

(Lo« conce

Figure 16. Options to change linker file

5. See Getting Started with MCUXpresso SDK for EVK-MIMXRT685 for the steps to build and run the “hello_world” demo
using the IAR IDE. Make sure that the project target is the one which was modified until now.

6. Place a breakpoint at the function call inside the main function of the Aello_world.cfile and you will see that the
debugger moves from the RAM to the flash location from the address window.

NOTE

By default, the IDE decides which kind of breakpoint can be used. Because we have only eight hardware
breakpoints, the IDE always tries to use the software breakpoint first. The software breakpoint is just a special
instruction written in the RAM. During debugging, the IAR IDE firstly downloads the program into the flash,resets
the system, and halts before the startup code. Then it sets the breakpoint at main() and continues to run. Because
the breakpoint at main() is a software breakpoint, it will be overwritten after the startup code relocates (from

the flash to the RAM in /ar_program_start()). You can set the breakpoint and debug with either of the below

configurations (a) or (b).

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

13/19

NXP Semiconductors

Sample example application

a. Force the IAR IDE to use hardware breakpoints with the limitation that only eight breakpoints are available in

debugging.

Options for node "hello_world"

X

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
CADI
GDB Server
Ijet
JLink/J-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver

Setup Interface

Default breakpaint type
O Auto

() Software

Catch exceptions
Reset Prefetch
Undef IRGQ
SwW FiQ
Data

Breakpoints

[[] Restore software breakpoints at

_call_main

[JCORERESET []BUSERR
[JINTERR
[JHARDERR
[FISFERR

[CJMMERR
[CJNOCPERR
[CJCHKERR
[JSTATERR

Factory Settings

TIMSPFET
TLXDS

Cancel

Figure 17. Option to set hardware breakpoint

b. Make the IAR IDE stop at call_main(). At call_main(), the code relocation/data copy completes, and then it is safe

to set the software breakpoint.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note

14/19

NXP Semiconductors

Sample example application

Options for node “helle_world" X

Category: Factory Settings

General Options

Static Analysis

Runtime Checking
C/C++ Compiler Setup Download Images Mutticore Extra Options Plugins
Assembler
Output Converter Driver M Runto

Custom Buid CMSIS DAP %

Build Actions
Linker Setup macros
[] Use macro file(s)

Simulator
CADI
CMSIS DAP
GDB Server
i Device description file
J-Link/1-Trace
TI Stellaris] Ovemide default

Nu-Link STOOLKIT_DIR$S\CONFIG\debugger\NXP\MIMXRTE855_M3
PE micro

STLINK
Third-Party Driver
TI MSP-FET

TI XDS

Cancel

Figure 18. Configuration to set software breakpoint

3.3 Methodology for programming the flash

The idea is to place the complete image to the flash memory (non XIP) for it to be booted onto the SRAM. When the complete
image is booted onto the SRAM, the execution starts. Because the linker script has already been modified to load some part of
the code from the external flash memory, it will be executed on the flash only (XIP).

To program the external flash, NXP’s “blhost” application is required. The b/host.exe (Windows OS host machine) file is present
in the SDK_2.8.2_EVK-MIMXRT685S|middlewarelmcu-bootlbinl Tools|blhostiwin directory.

NOTE
It is recommended to use the “blhost” application with Windows Powershell.

See the blhost User Guide (document MCUBLHOSTUG) to get started with the “blhost” application.

The FlexSPI boot image can be either the XIP image or the Non-XIP image. The XIP image can only be linked at address
0x08001000 and the first 4 KB of the FlexSPI map region is used to store the flash config block.

A Non-XIP image should be linked into the internal 4.5 MB SRAM. As the first 112 KB of SRAM has been occupied by the
ROM after the boot and the region 0x1C000 - Ox7FFFF is the shared memory between the DSP and Cortex-M33, it is better
to link the Non-XIP image from 0x80000. For applications which do not use the DSP, the Non-XIP image can be linked starting
from 0x1C000.

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 15/19

http://www.nxp.com/doc/MCUBLHOSTUG

NXP Semiconductors

Sample example application

3.3.1 Steps for programming flash

1. See the following path to retrieve the complete binary image which will be loaded onto the flash using the “blhost”
commands:

* For the Keil IDE SDK_2.8.2_EVK-MIMXRT685|boards|evkmimxrt685|Projects|hello_worldimdkldebug
* Forthe IAR IDE SDK 2.8.2_ EVK-MIMXRT685|boards|evkmimxrt685|Projects|hello_worldliariflash_debug

NOTE
For the MCUXpresso IDE, to convert the *axffile to the *binfile, right-click the project in the workspace and
then select “Binary Utilites-> Create Binary” or open the project properties by right clicking. In the left-hand list
of the “Properties” window, open “C/C++ Build” and select “Settings”. Select the “Build steps” tab and, in the
“Post-build steps - Command” field, click “Edit...”. Uncomment the following line: arm-none-eabi-objcopy -v -O
binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin". Then click “OK” and “Apply and close”.

2. Set up the hardware to ensure booting from the FlexSPI-enabled NOR flash. For this, the settings for SW 5 on the
RT685 EVK are as follows: The ISPO is on/high, and ISP1 and ISP2 are both low, as shown in Figure 19.

Figure 19. Setting SW5 to 1-ON, 2-OFF,3-OFF

3. Open the Powershell terminal in the “blhost” directory (middleware/mcu-boot/bin/Tools/blhost/win). Place the generated
binary for the “hello_world” demo into this folder.

4. Connect a USB cable to the J7 USB port and issue the following “blhost” commands using Powershell:

a. Configure the FlexSPI controller to program the flash:
./blhost -u 0x1fc9,0x0020 -- fill-memory 0x1c000 4 0xC1503051
.blhost -u 0x1fc9,0x0020 -- fill-memory 0x1c004 4 0x20000014
.blhost -u 0x1fc9,0x0020 -- configure-memory 9 0x1c000

b. Erase the region to be programmed:
./blhost -u 0x1fc9,0x0020 -- flash-erase-region 0x08000000 0x6000

c. Program the image to the flash at 0x08000000:
./blhost -u 0x1fc9,0x0020 -- write-memory 0x08000000 .\hello_world.bin

NOTE

When examining the hello_world.binfile in a HEX editor, the *bin starts from 0x08000000 and it is zero-filled from
offset 0x0-0x400 for the MCUXpresso IDE. Therefore, the image should be programmed starting at 0x08000000 for
steps b and c. For the Keil IDE, this address should be also 0x08000000. This address varies for other toolchains.

In the IAR IDE, the *binimage starts from the FCB address at 0x08000400 (when BOOT_HEADER_ENABLE=1)

and does not zero-fill from 0x08000000. For the IAR IDE, the generated binaries use 0x8000400 for programming
image at steps b and c.

RT600 Hybrid Boot, Rev. 0, 09/2020

Application Note 16/19

NXP Semiconductors

Conclusion

PS C:\nxp\blhost_2.6.2\bin\win> ./blhost 0x1fc9,0x0020 fill-memory O0x1c000 4 0xC1503051
Inject command ‘fil1-memory’ :
successful generic response to command 'fill-memory’
Response status = 0 (0x0) Success.
PS C:\nxp\blhost_2.6.2\bin\win> ./blhost 0x1fc9,0x0020 fil11l-memory 0x1c004 4 0x20000014
Inject command 'fi11-memory’
Ssuccessful generic response to command 'fill-memory’
Response status = 0 (0x0) Success.
PS C:\nxp\blhost_2.6.2\bin\win> ./blhost 0x1fc9,0x0020 configure-memory 9 0x1c000
Inject command 'configure-memory'
successful generic response to command 'configure-memory’
= 0 (0x0) Success.
PS C:\nxp\blhost_2.6.2\bin\win> ./blhost 0x1fc9,0x0020 flash-erase-region 0x08000400 0x6000
Inject commandll' flash-erase-region’ .
successful generic response to command 'flash-erase-region’
Response status = 0 (0x0) Success.
Ps c:\nxp\blhost_2.6.2\bin\win> ./bThost 0x1fc9.0x0020 write-memory 0x08000400 .\hello_world.bin
Inject command 'write-memory"
Preparing to send 14944 (0x3a60) bytes to the target.
successful generic response to command 'write-memory'
(1/1)100% completed!)
successful generic response to command 'write-memory'
Response status = 0 (0Ox0) Success.
rote 14944 of 14944 bytes.

Figure 20. blhost commands sequence

The argument values 0xc1503051 and 0x20000014 in the fill-memory command is the FlexSPI boot configuration
option block.

5. Switch the RT685-EVK board to the FlexSPI Port B boot mode by setting SW5 to 1-ON, 2-OFF, and 3-ON, as shown in
Figure 21.

Figure 21. Setting SW5 to 1-ON, 2-OFF, 3-ON

6. Reset the board and connect the USB cable to the J5 port and the “hello_world” demo should run successfully.

4 Conclusion

This application note shows how some part of code can be booted from the external flash into the internal RT685 SRAM and how
the remaining code can continue to reside in flash to be fetched/executed directly. The example explains how to change the linker
file to do this hybrid booting in details.

5 References

1. RT600 User Manual (document UM11147)
2. RT600 Data Sheet

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 17/19

https://www.nxp.com/doc/UM11147
https://www.nxp.com/docs/en/data-sheet/DS-RT600.pdf

NXP Semiconductors

References

MCUXpresso SDK Release Notes for EVK-MIMXRT685 (located inside the SDK)
Getting Started with MCUXpresso SDK for EVK-MIMXRT685 (located inside the SDK)
MCUXpresso IDE User Guide

MCU blhost User Guide (document MCUBLHOSTUG)

How fo Enable Master Boot from Serial NOR Flash (document AN12773)

N o o b~ w

RT600 Hybrid Boot, Rev. 0, 09/2020
Application Note 18/19

https://www.nxp.com/docs/en/user-guide/MCUXpresso_IDE_User_Guide.pdf
http://www.nxp.com/doc/MCUBLHOSTUG
https://www.nxp.com/doc/AN12773

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CorelLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle

and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12985

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 RT600 boot overview
	2.1 Boot features
	2.2 Boot settings
	2.3 Boot image offset
	2.4 Image link region

	3 Sample example application
	3.1 Environment
	3.1.1 Hardware environment
	3.1.2 Software environment

	3.2 Steps
	3.2.1 Steps for Keil IDE
	3.2.2 Steps for MCUXPresso IDE
	3.2.3 Steps for IAR IDE

	3.3 Methodology for programming the flash
	3.3.1 Steps for programming flash

	4 Conclusion
	5 References

